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Abstract. We consider a particle which is randomly accelerated by Gaussian white noise on
the line 0 < x < 1, with absorbing boundaries at x = 0, 1. Denoting the initial position and
velocity of the particle by x0 and v0 and solving a Fokker–Planck-type equation, we derive the
exact probabilities q0(x0, v0), q1(x0, v0) of absorption at x = 0, 1, respectively. The results are in
excellent agreement with computer simulations.

A well known topic in random walk theory [1] is the problem of the ‘gambler’s ruin’. Initially,
the gambler has an amount of money x0 and the bank the amount 1−x0. The gambler flips a coin
repeatedly, randomly winning or losing the increment ε. The game ends when the gambler’s
funds reach 0 or 1. The problem is to compute the probability q0(x0) that the gambler loses
everything.

The problem is easily solved. Since q0(x0) = 1
2 [q0(x0 + ε) + q0(x0 − ε)],

d2q0(x0)

dx2
0

= 0 (1)

in the limit ε → 0. From equation (1) and the boundary conditions q0(0) = 1, q0(1) = 0,

q0(x0) = 1 − x0. (2)

As the starting capital increases from 0 to 1, the probability of the gambler’s ruin decreases
from 1 to 0.

Instead of the gambling scenario one could equally well imagine a particle making a
random walk with infinitesimal steps ±ε on the x-axis, with initial position 0 < x0 < 1.
Over the course of time the particle eventually arrives at x = 0 or 1. The quantities q0(x0) in
equation (2) and q1(x0) = 1 − q0(x0) represent the probabilities that the particle first reaches
the edge of the interval at x = 0 and 1, respectively. Alternatively, we could impose absorbing
boundary conditions and interpret q0(x0) and q1(x0) as the probabilities of absorption at x = 0
and at x = 1.
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In this paper we also consider a particle on the finite interval 0 < x < 1, but we assume
that the changes in the velocity rather than the position of the particle are random. The particle
moves according to the Langevin equation

d2x

dt2
= η(t) (3)

where the acceleration η(t) has the form of Gaussian white noise, with

〈η(t)〉 = 0 〈η(t1)η(t2)〉 = 2δ(t1 − t2). (4)

Imposing absorbing boundary conditions, we derive the probabilities q0(x0, v0), q1(x0, v0) of
absorption at x = 0 and at x = 1, respectively, as functions of the initial position and velocity.

The quantity q0(x0, v0) can also be interpreted as the probability of a gambler’s ruin, but
the game is different. The gambler has an amount of money x(t) at time t and the bank the
amount 1 − x(t). Money is transferred from the bank to the gambler at a rate v = dx/dt ,
which may be positive or negative. At regular infinitesimal intervals the gambler flips a coin,
randomly increasing or decreasing the rate v by the increment �. The game ends when x

reaches 0 or 1. The quantity q0(x0, v0) is the probability that a gambler with initial conditions
x0, v0 loses everything.

In the case of a random walk on the x-axis, the probability density P(x, x0, t) at time t of
a particle which is initially at x0 obeys the diffusion equation. For a particle which is randomly
accelerated according to equations (3) and (4), the probability density P(x, v; x0, v0; t) in the
phase space (x, v) satisfies the Fokker–Planck equation [2](

∂

∂t
+ v

∂

∂x
− ∂2

∂v2

)
P(x, v; x0, v0; t) = 0 (5)

corresponding to diffusion of the velocity, with the initial condition

P(x, v; x0, v0; 0) = δ(x − x0)δ(v − v0). (6)

In analogy with the discussion leading to differential equation (1) for q0(x0), let us consider
a discrete dynamics in which the velocity v changes by ±� with equal probability at time
intervals τ . For this dynamics

P(x, v; x0, v0; t) = 1
2 [P(x − vτ, v + �; x0, v0; t − τ) + P(x − vτ, v − �; x0, v0; t − τ)]

(7)

q0(x0, v0) = 1
2 [q0(x0 + v0τ, v0 + �) + q0(x0 + v0τ, v0 − �)]. (8)

Expanding equations (7) and (8) in τ and �, dividing by τ , and taking the limit τ = 1
2�

2 → 0
gives us a ‘poor man’s’ derivation of the Fokker–Planck equation (5) and the corresponding
differential equation(

v0
∂

∂x0
+

∂2

∂v2
0

)
q0(x0, v0) = 0 (9)

for the probability of absorption at x = 0.
To solve equation (9) with the absorbing boundary condition

q0(0, v0) = 1 v0 < 0 (10)

and the requirements

q0(x0, v0) = q1(1 − x0,−v0) (11)

q0(x0, v0) + q1(x0, v0) = 1 (12)
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of reflection symmetry and total probability equal to 1, we first make the substitution

ψ(x, v) = q0(x,−v) − 1
2 . (13)

Expressed in terms of ψ(x, v), equations (9)–(12) take the form(
v

∂

∂x
− ∂2

∂v2

)
ψ(x, v) = 0 (14)

ψ(0, v) = 1
2 v > 0 (15)

ψ(x, v) = −ψ(1 − x,−v). (16)

Masoliver and Porrà [3] have shown how certain Fokker–Planck-type equations on the
finite interval 0 < x < 1 can be solved exactly. They derived an exact result for the average
time T (x0, v0) a randomly accelerated particle with initial conditions x0, v0 takes to reach a
boundary of the interval. The probability that the particle has not yet reached a boundary
after a time t decays as e−Et , as discussed by Burkhardt [4]. He obtained E numerically
with an approach similar to [3] and related it to the confinement free energy of a semiflexible
polymer in a tube. In another application inspired by [3], Burkhardt et al [5] calculated
the equilibrium distribution function P(x, v) of a randomly accelerated particle on the line
0 < x < 1 undergoing inelastic collisions at the boundaries [6].

The function ψ(x, v) satisfies the same steady-state Fokker–Planck equation (14) as the
quantity P(x, v) considered in [5] and has the same Green’s function solution

ψ(x, v) = v1/2

3x

∫ ∞

0
du u3/2e−(v3+u3)/9x I−1/3

(
2v3/2u3/2

9x

)
ψ(0, u)

− 1

31/3�( 2
3 )

∫ x

0
dy

e−v3/9(x−y)

(x − y)2/3

∂ψ(y, 0)

∂v
v > 0 (17)

derived in [5]. Equation (17) only holds for positive v. For negative v, ψ(x, v) can be obtained
from equation (17) using the antisymmetry (16) under reflection.

Equation (17) determines ψ(x, v) for all x > 0 and v > 0 from ψ(0, v) and ∂ψ(x, 0)/∂v.
The first of these functions is given in equation (15). To determine the second, we set v = 0
in equation (17), which yields

ψ(x, 0) = 1

31/3�( 2
3 )

[
x−2/3

∫ ∞

0
du ue−u3/9xψ(0, u) −

∫ x

0

dy

(x − y)2/3

∂ψ(y, 0)

∂v

]
. (18)

Then, substituting equation (18) in the relation ψ(x, 0)+ψ(1−x, 0) = 0, which follows from
(16), and using ∂ψ(y, 0)/∂v = ∂ψ(1 − y, 0)/∂v, also a consequence of (16), we obtain∫ 1

0

dy

|x − y|2/3

∂ψ(y, 0)

∂v
=

∫ ∞

0
du u

[
e−u3/9x

x2/3
+

e−u3/9(1−x)

(1 − x)2/3

]
ψ(0, u). (19)

The solution to integral equation (19), derived, following [7], in appendix B of [5], is given by

∂ψ(x, 0)

∂v
=

∫ ∞

0
du u [R(x, u) + R(1 − x, u)]ψ(0, u) (20)

where

R(x, u) = 1

35/6�( 1
3 )�( 5

6 )

u1/2e−u3/9x

x7/6(1 − x)1/6 1F1

(
−1

6
,

5

6
,
u3(1 − x)

9x

)
(21)

and 1F1(a; b; z) is the confluent hypergeometric function [8, 9].
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Equations (17), (20), and (21) determine ψ(x, v) for all x and v from ψ(0, v) for v > 0,
which is known from the absorbing boundary condition (15). Substituting equations (15) and
(21) in (20) leads to

∂ψ(x, 0)

∂v
= 1

31/6�( 1
3 )

[x(1 − x)]−1/6 (22)

and from (15), (17) and (22)

ψ(x, v) = 1

2
− 1

2π

∫ x

0
dy

e−v3/9(y−x)

(y − x)2/3
[y(1 − y)]−1/6. (23)

Rewriting equation (23) in terms of q0(x0, v0) using (11)–(13), we obtain our main result

q0(x0, v0) = 1 − q0(1 − x0,−v0) = 1

2π

∫ 1

x0

dy
e−v3

0/9(y−x0)

(y − x0)2/3
[y(1 − y)]−1/6 v0 > 0

(24)

analogous to the solution (2) of the traditional gambler’s ruin problem.
For x0 = 1 equation (24) reproduces the expected result q0(1, v0) = 1 − q0(0,−v0) = 0,

v0 > 0, corresponding to the immediate absorption of a particle that is initially at either
boundary with velocity directed outward from the interval 0 < x < 1. For x0 = 0 and v0 = 0
the integral in equation (24) can be evaluated, yielding

q0(0, v0) = 1 − q0(1,−v0) = 1 − 2 × 32/3

�( 1
6 )

v
1/2
0 1F1(

1
6 ; 7

6 ; − 1
9v

3
0) v0 > 0 (25)

q0(x0, 0) = 1 − q0(1 − x, 0) = 1 − 6�( 1
3 )

�( 1
6 )

2
x

1/6
0 2F1(

1
6 ,

5
6 ; 7

6 ; x0). (26)

Here 1F1(a; b; z) and 2F1(a, b; c; z) are the confluent and ordinary hypergeometric functions
[8, 9].

The probability q0(x0, v0) of absorption at the origin, obtained from equation (24) by
numerical integration, is shown in figure 1. The probability decreases monotonically as x0

increases with fixed v0 and as v0 increases at fixed x0, as expected. The quantity q0(x0, v0) is
a non-singular function of (x0, v0) except at the two boundary points (0, 0) and (1, 0). The
curves for x0 = 0.0, 0.1, 0.3, 0.5 become smoother near v0 = 0 as x0 increases, and for
x0 = 0.5, q0(x0, v0) − 1

2 is an odd function of v0, as implied by equations (11) and (12).
The points in figure 1 show the results of computer simulations, which clearly are in

excellent agreement with the analytical results. Our simulation routine is based on the exact
solution [10]

Pfree(x, v; x0, v0; t) =
√

3

2πt2
exp

{
− 3

t3

[
(x − x0 − v0t)(x − x0 − vt) +

1

3
(v − v0)

2t2

]}
(27)

of the Fokker–Planck equation (5) with initial condition (6) in the absence of boundaries.
Trajectories with the probability distribution Pfree(xn+1, vn+1; xn, vn;�n+1) given by (27) are
generated using the algorithm

xn+1 = xn + vn�n+1 +

(
�3

n+1

6

)1/2 (
sn+1 +

√
3 rn+1

)
(28)

vn+1 = vn + (2�n+1)
1/2 rn+1 (29)
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Figure 1. The probability q0(x0, v0) of absorption at the origin. The full curves show the exact
result given in equation (24). The points are the results of our computer simulations. The data
points have a statistical uncertainty ±δq0 with |δq0| � 0.001.

where xn and vn are the position and velocity of the particle at time tn, and �n+1 = tn+1 − tn.
The quantities rn and sn are independent Gaussian random numbers such that

〈rn〉 = 〈sn〉 = 0 〈r2
n〉 = 〈s2

n〉 = 1. (30)

In the absence of boundaries there is no time-step error in the algorithm, i.e. the �n may be
chosen arbitrarily. Close to boundaries small time steps are needed.

To derive a quantitative criterion for an acceptable time step, we begin with the averages

〈x(t)〉 = x0 + v0t 〈[x(t) − 〈x(t)〉]2〉 = 2
3 t

3 (31)

implied by the distribution function (27). At time t the particle coordinate x has a Gaussian

distribution, with a maximum at x = x0 + v0t and the root-mean-square width
(

2
3 t

3
)1/2

. The
effect of the boundaries on the propagation is negligible if the Gaussian peak lies almost entirely
within the interval 0 < x < 1. This is certainly the case if, say,

0 < x0 + v0t ± 5t3/2 < 1. (32)

Over the range of velocities encountered in our simulations, any t which satisfies the simpler,
more stringent condition

t < 1
10x0(1 − x0) (33)

also satisfies (32).
Keeping inequality (33) in mind, we performed our simulations with the time step

�n+1 = 10−5 + 10−1xn(1 − xn). (34)

The time step decreases as the particle approaches the boundary and has the minimum value
10−5. It is necessary to have a small non-zero minimum value. Otherwise the particle never
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arrives at the boundaries. Our results for the absorption probability q0(x0, v0) are averages
based on 105 trajectories for each set of initial conditions x0, v0.

Finally, we note that q0(x0, v0) may be derived from another general Green’s function
solution† of the Fokker–Planck equation (14),

ψ(x, v) = v1/2

3x

∫ ∞

0
du u3/2e−(v3+u3)/9x I1/3

(
2v3/2u3/2

9x

)
ψ(0, u)

+
v

32/3�( 1
3 )

∫ x

0
dy

e−v3/9(x−y)

(x − y)4/3
ψ(y, 0) v > 0 (35)

different from (17). By substituting equation (35) in (14), one can check that the Fokker–
Planck equation is indeed satisfied. On the lines x = 0 and v = 0 equation (35) reduces to the
identities ψ(0, v) = ψ(0, v) and ψ(x, 0) = ψ(x, 0), respectively.

Equation (35) determines ψ(x, v) for all x > 0 and v > 0 from ψ(0, v), v > 0 and
ψ(x, 0). The first of these functions is given in equation (15). To determine the second one,
we differentiate equation (35) with respect to v and then set v = 0, which yields

∂ψ(x, 0)

∂v
= 1

32/3�( 1
3 )

[
x−4/3

∫ ∞

0
du u2e−u3/9xψ(0, u) − 3x−1/3ψ(0, 0)

−3
∫ x

0

dy

(x − y)1/3

∂ψ(y, 0)

∂y

]
. (36)

For the absorbing boundary condition (15) the first two terms on the right-hand side of (36)
cancel. Substituting equation (36) in the relation ∂ψ(x, 0)/∂v− ∂ψ(1 −x, 0)/∂v = 0, which
follows from (16), using the invariance of ∂ψ(y, 0)/∂y under y → 1−y, and integrating with
respect to x yields

∫ 1

0
dy |x − y|2/3 ∂ψ(y, 0)

∂y
= constant. (37)

The function ψ(x, 0) given in equations (13) and (26) satisfies equation (37). Substituting this
ψ(x, 0) and ψ(0, v) = 1

2 into equation (35), integrating, and using (11)–(13), we obtain

q0(x0, v0) = 1 − q0(1 − x0,−v0)

= 2 × 31/3v

�( 1
6 )

2

∫ 1

x0

dy
e−v3

0/9(y−x0)

(y − x0)4/3
(1 − y)1/6

2F1(
1
6 ,

5
6 ; 7

6 ; 1 − y) v0 > 0. (38)

With the help of the identity

∫ x

0
dy

e−v3/9(x−y)

(x − y)2/3
f (y) = v

32/3�( 1
3 )

∫ x

0
dz

e−v3/9(x−z)

(x − z)4/3

∫ z

0
dy

f (y)

(z − y)2/3
(39)

for arbitrary f (y), one can convert expression (38) for q0(x0, v0) into the simpler form (24).
The second of the two Green function solutions (17), (35) looks simpler than the first,

since no derivatives of ψ appear on the right-hand side, but our main result (24) for q0(x0, v0)

is obtained more easily from (17).

† This solution may be derived by slightly modifying the derivation in appendix A of [5]. Setting v = 0 in
equation (A3) of [5], solving for W(s), and reinserting the result in (A3) with v �= 0 yields the Laplace transform of
the new solution (35).
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