Absorption of a randomly accelerated particle: gambler's ruin in a different game

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 336835
(http://iopscience.iop.org/0305-4470/33/39/301)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:32

Please note that terms and conditions apply.

# Absorption of a randomly accelerated particle: gambler's ruin in a different game 

Dominique J Bicout $\dagger$ and Theodore W Burkhardt $\ddagger \S$<br>$\dagger$ INFM-Operative Group Grenoble CRG IN13, Institut Laue-Langevin, BP 156,<br>F-38042 Grenoble Cedex 9, France<br>$\ddagger$ Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France

Received 12 June 2000


#### Abstract

We consider a particle which is randomly accelerated by Gaussian white noise on the line $0<x<1$, with absorbing boundaries at $x=0,1$. Denoting the initial position and velocity of the particle by $x_{0}$ and $v_{0}$ and solving a Fokker-Planck-type equation, we derive the exact probabilities $q_{0}\left(x_{0}, v_{0}\right), q_{1}\left(x_{0}, v_{0}\right)$ of absorption at $x=0,1$, respectively. The results are in excellent agreement with computer simulations.


A well known topic in random walk theory [1] is the problem of the 'gambler's ruin'. Initially, the gambler has an amount of money $x_{0}$ and the bank the amount $1-x_{0}$. The gambler flips a coin repeatedly, randomly winning or losing the increment $\epsilon$. The game ends when the gambler's funds reach 0 or 1 . The problem is to compute the probability $q_{0}\left(x_{0}\right)$ that the gambler loses everything.

The problem is easily solved. Since $q_{0}\left(x_{0}\right)=\frac{1}{2}\left[q_{0}\left(x_{0}+\epsilon\right)+q_{0}\left(x_{0}-\epsilon\right)\right]$,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} q_{0}\left(x_{0}\right)}{\mathrm{d} x_{0}^{2}}=0 \tag{1}
\end{equation*}
$$

in the limit $\epsilon \rightarrow 0$. From equation (1) and the boundary conditions $q_{0}(0)=1, q_{0}(1)=0$,

$$
\begin{equation*}
q_{0}\left(x_{0}\right)=1-x_{0} . \tag{2}
\end{equation*}
$$

As the starting capital increases from 0 to 1 , the probability of the gambler's ruin decreases from 1 to 0 .

Instead of the gambling scenario one could equally well imagine a particle making a random walk with infinitesimal steps $\pm \epsilon$ on the $x$-axis, with initial position $0<x_{0}<1$. Over the course of time the particle eventually arrives at $x=0$ or 1 . The quantities $q_{0}\left(x_{0}\right)$ in equation (2) and $q_{1}\left(x_{0}\right)=1-q_{0}\left(x_{0}\right)$ represent the probabilities that the particle first reaches the edge of the interval at $x=0$ and 1 , respectively. Alternatively, we could impose absorbing boundary conditions and interpret $q_{0}\left(x_{0}\right)$ and $q_{1}\left(x_{0}\right)$ as the probabilities of absorption at $x=0$ and at $x=1$.
§ Permanent address: Department of Physics, Temple University, Philadelphia, PA 19122, USA.

In this paper we also consider a particle on the finite interval $0<x<1$, but we assume that the changes in the velocity rather than the position of the particle are random. The particle moves according to the Langevin equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\eta(t) \tag{3}
\end{equation*}
$$

where the acceleration $\eta(t)$ has the form of Gaussian white noise, with

$$
\begin{equation*}
\langle\eta(t)\rangle=0 \quad\left\langle\eta\left(t_{1}\right) \eta\left(t_{2}\right)\right\rangle=2 \delta\left(t_{1}-t_{2}\right) \tag{4}
\end{equation*}
$$

Imposing absorbing boundary conditions, we derive the probabilities $q_{0}\left(x_{0}, v_{0}\right), q_{1}\left(x_{0}, v_{0}\right)$ of absorption at $x=0$ and at $x=1$, respectively, as functions of the initial position and velocity.

The quantity $q_{0}\left(x_{0}, v_{0}\right)$ can also be interpreted as the probability of a gambler's ruin, but the game is different. The gambler has an amount of money $x(t)$ at time $t$ and the bank the amount $1-x(t)$. Money is transferred from the bank to the gambler at a rate $v=\mathrm{d} x / \mathrm{d} t$, which may be positive or negative. At regular infinitesimal intervals the gambler flips a coin, randomly increasing or decreasing the rate $v$ by the increment $\Delta$. The game ends when $x$ reaches 0 or 1 . The quantity $q_{0}\left(x_{0}, v_{0}\right)$ is the probability that a gambler with initial conditions $x_{0}, v_{0}$ loses everything.

In the case of a random walk on the $x$-axis, the probability density $P\left(x, x_{0}, t\right)$ at time $t$ of a particle which is initially at $x_{0}$ obeys the diffusion equation. For a particle which is randomly accelerated according to equations (3) and (4), the probability density $P\left(x, v ; x_{0}, v_{0} ; t\right)$ in the phase space $(x, v)$ satisfies the Fokker-Planck equation [2]

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial x}-\frac{\partial^{2}}{\partial v^{2}}\right) P\left(x, v ; x_{0}, v_{0} ; t\right)=0 \tag{5}
\end{equation*}
$$

corresponding to diffusion of the velocity, with the initial condition

$$
\begin{equation*}
P\left(x, v ; x_{0}, v_{0} ; 0\right)=\delta\left(x-x_{0}\right) \delta\left(v-v_{0}\right) \tag{6}
\end{equation*}
$$

In analogy with the discussion leading to differential equation (1) for $q_{0}\left(x_{0}\right)$, let us consider a discrete dynamics in which the velocity $v$ changes by $\pm \Delta$ with equal probability at time intervals $\tau$. For this dynamics
$P\left(x, v ; x_{0}, v_{0} ; t\right)=\frac{1}{2}\left[P\left(x-v \tau, v+\Delta ; x_{0}, v_{0} ; t-\tau\right)+P\left(x-v \tau, v-\Delta ; x_{0}, v_{0} ; t-\tau\right)\right]$
$q_{0}\left(x_{0}, v_{0}\right)=\frac{1}{2}\left[q_{0}\left(x_{0}+v_{0} \tau, v_{0}+\Delta\right)+q_{0}\left(x_{0}+v_{0} \tau, v_{0}-\Delta\right)\right]$.
Expanding equations (7) and (8) in $\tau$ and $\Delta$, dividing by $\tau$, and taking the limit $\tau=\frac{1}{2} \Delta^{2} \rightarrow 0$ gives us a 'poor man's' derivation of the Fokker-Planck equation (5) and the corresponding differential equation

$$
\begin{equation*}
\left(v_{0} \frac{\partial}{\partial x_{0}}+\frac{\partial^{2}}{\partial v_{0}^{2}}\right) q_{0}\left(x_{0}, v_{0}\right)=0 \tag{9}
\end{equation*}
$$

for the probability of absorption at $x=0$.
To solve equation (9) with the absorbing boundary condition

$$
\begin{equation*}
q_{0}\left(0, v_{0}\right)=1 \quad v_{0}<0 \tag{10}
\end{equation*}
$$

and the requirements

$$
\begin{align*}
& q_{0}\left(x_{0}, v_{0}\right)=q_{1}\left(1-x_{0},-v_{0}\right)  \tag{11}\\
& q_{0}\left(x_{0}, v_{0}\right)+q_{1}\left(x_{0}, v_{0}\right)=1 \tag{12}
\end{align*}
$$

of reflection symmetry and total probability equal to 1 , we first make the substitution

$$
\begin{equation*}
\psi(x, v)=q_{0}(x,-v)-\frac{1}{2} \tag{13}
\end{equation*}
$$

Expressed in terms of $\psi(x, v)$, equations (9)-(12) take the form

$$
\begin{align*}
& \left(v \frac{\partial}{\partial x}-\frac{\partial^{2}}{\partial v^{2}}\right) \psi(x, v)=0  \tag{14}\\
& \psi(0, v)=\frac{1}{2} \quad v>0  \tag{15}\\
& \psi(x, v)=-\psi(1-x,-v) \tag{16}
\end{align*}
$$

Masoliver and Porrà [3] have shown how certain Fokker-Planck-type equations on the finite interval $0<x<1$ can be solved exactly. They derived an exact result for the average time $T\left(x_{0}, v_{0}\right)$ a randomly accelerated particle with initial conditions $x_{0}, v_{0}$ takes to reach a boundary of the interval. The probability that the particle has not yet reached a boundary after a time $t$ decays as $\mathrm{e}^{-E t}$, as discussed by Burkhardt [4]. He obtained $E$ numerically with an approach similar to [3] and related it to the confinement free energy of a semiflexible polymer in a tube. In another application inspired by [3], Burkhardt et al [5] calculated the equilibrium distribution function $P(x, v)$ of a randomly accelerated particle on the line $0<x<1$ undergoing inelastic collisions at the boundaries [6].

The function $\psi(x, v)$ satisfies the same steady-state Fokker-Planck equation (14) as the quantity $P(x, v)$ considered in [5] and has the same Green's function solution

$$
\begin{align*}
\psi(x, v)=\frac{v^{1 / 2}}{3 x} & \int_{0}^{\infty} \mathrm{d} u u^{3 / 2} \mathrm{e}^{-\left(v^{3}+u^{3}\right) / 9 x} I_{-1 / 3}\left(\frac{2 v^{3 / 2} u^{3 / 2}}{9 x}\right) \psi(0, u) \\
& -\frac{1}{3^{1 / 3} \Gamma\left(\frac{2}{3}\right)} \int_{0}^{x} \mathrm{~d} y \frac{\mathrm{e}^{-v^{3} / 9(x-y)}}{(x-y)^{2 / 3}} \frac{\partial \psi(y, 0)}{\partial v} \quad v>0 \tag{17}
\end{align*}
$$

derived in [5]. Equation (17) only holds for positive $v$. For negative $v, \psi(x, v)$ can be obtained from equation (17) using the antisymmetry (16) under reflection.

Equation (17) determines $\psi(x, v)$ for all $x>0$ and $v>0$ from $\psi(0, v)$ and $\partial \psi(x, 0) / \partial v$. The first of these functions is given in equation (15). To determine the second, we set $v=0$ in equation (17), which yields

$$
\begin{equation*}
\psi(x, 0)=\frac{1}{3^{1 / 3} \Gamma\left(\frac{2}{3}\right)}\left[x^{-2 / 3} \int_{0}^{\infty} \mathrm{d} u u \mathrm{e}^{-u^{3} / 9 x} \psi(0, u)-\int_{0}^{x} \frac{\mathrm{~d} y}{(x-y)^{2 / 3}} \frac{\partial \psi(y, 0)}{\partial v}\right] \tag{18}
\end{equation*}
$$

Then, substituting equation (18) in the relation $\psi(x, 0)+\psi(1-x, 0)=0$, which follows from (16), and using $\partial \psi(y, 0) / \partial v=\partial \psi(1-y, 0) / \partial v$, also a consequence of (16), we obtain

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathrm{~d} y}{|x-y|^{2 / 3}} \frac{\partial \psi(y, 0)}{\partial v}=\int_{0}^{\infty} \mathrm{d} u u\left[\frac{\mathrm{e}^{-u^{3} / 9 x}}{x^{2 / 3}}+\frac{\mathrm{e}^{-u^{3} / 9(1-x)}}{(1-x)^{2 / 3}}\right] \psi(0, u) \tag{19}
\end{equation*}
$$

The solution to integral equation (19), derived, following [7], in appendix B of [5], is given by

$$
\begin{equation*}
\frac{\partial \psi(x, 0)}{\partial v}=\int_{0}^{\infty} \mathrm{d} u u[R(x, u)+R(1-x, u)] \psi(0, u) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x, u)=\frac{1}{3^{5 / 6} \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{5}{6}\right)} \frac{u^{1 / 2} \mathrm{e}^{-u^{3} / 9 x}}{x^{7 / 6}(1-x)^{1 / 6}}{ }_{1} F_{1}\left(-\frac{1}{6}, \frac{5}{6}, \frac{u^{3}(1-x)}{9 x}\right) \tag{21}
\end{equation*}
$$

and ${ }_{1} F_{1}(a ; b ; z)$ is the confluent hypergeometric function $[8,9]$.

Equations (17), (20), and (21) determine $\psi(x, v)$ for all $x$ and $v$ from $\psi(0, v)$ for $v>0$, which is known from the absorbing boundary condition (15). Substituting equations (15) and (21) in (20) leads to

$$
\begin{equation*}
\frac{\partial \psi(x, 0)}{\partial v}=\frac{1}{3^{1 / 6} \Gamma\left(\frac{1}{3}\right)}[x(1-x)]^{-1 / 6} \tag{22}
\end{equation*}
$$

and from (15), (17) and (22)

$$
\begin{equation*}
\psi(x, v)=\frac{1}{2}-\frac{1}{2 \pi} \int_{0}^{x} \mathrm{~d} y \frac{\mathrm{e}^{-v^{3} / 9(y-x)}}{(y-x)^{2 / 3}}[y(1-y)]^{-1 / 6} \tag{23}
\end{equation*}
$$

Rewriting equation (23) in terms of $q_{0}\left(x_{0}, v_{0}\right)$ using (11)-(13), we obtain our main result
$q_{0}\left(x_{0}, v_{0}\right)=1-q_{0}\left(1-x_{0},-v_{0}\right)=\frac{1}{2 \pi} \int_{x_{0}}^{1} \mathrm{~d} y \frac{\mathrm{e}^{-v_{0}^{3} / 9\left(y-x_{0}\right)}}{\left(y-x_{0}\right)^{2 / 3}}[y(1-y)]^{-1 / 6} \quad v_{0}>0$
analogous to the solution (2) of the traditional gambler's ruin problem.
For $x_{0}=1$ equation (24) reproduces the expected result $q_{0}\left(1, v_{0}\right)=1-q_{0}\left(0,-v_{0}\right)=0$, $v_{0}>0$, corresponding to the immediate absorption of a particle that is initially at either boundary with velocity directed outward from the interval $0<x<1$. For $x_{0}=0$ and $v_{0}=0$ the integral in equation (24) can be evaluated, yielding
$q_{0}\left(0, v_{0}\right)=1-q_{0}\left(1,-v_{0}\right)=1-\frac{2 \times 3^{2 / 3}}{\Gamma\left(\frac{1}{6}\right)} v_{0}^{1 / 2}{ }_{1} F_{1}\left(\frac{1}{6} ; \frac{7}{6} ;-\frac{1}{9} v_{0}^{3}\right) \quad v_{0}>0$
$q_{0}\left(x_{0}, 0\right)=1-q_{0}(1-x, 0)=1-\frac{6 \Gamma\left(\frac{1}{3}\right)}{\Gamma\left(\frac{1}{6}\right)^{2}} x_{0}^{1 / 6}{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; \frac{7}{6} ; x_{0}\right)$.
Here ${ }_{1} F_{1}(a ; b ; z)$ and ${ }_{2} F_{1}(a, b ; c ; z)$ are the confluent and ordinary hypergeometric functions [8, 9].

The probability $q_{0}\left(x_{0}, v_{0}\right)$ of absorption at the origin, obtained from equation (24) by numerical integration, is shown in figure 1 . The probability decreases monotonically as $x_{0}$ increases with fixed $v_{0}$ and as $v_{0}$ increases at fixed $x_{0}$, as expected. The quantity $q_{0}\left(x_{0}, v_{0}\right)$ is a non-singular function of $\left(x_{0}, v_{0}\right)$ except at the two boundary points $(0,0)$ and $(1,0)$. The curves for $x_{0}=0.0,0.1,0.3,0.5$ become smoother near $v_{0}=0$ as $x_{0}$ increases, and for $x_{0}=0.5, q_{0}\left(x_{0}, v_{0}\right)-\frac{1}{2}$ is an odd function of $v_{0}$, as implied by equations (11) and (12).

The points in figure 1 show the results of computer simulations, which clearly are in excellent agreement with the analytical results. Our simulation routine is based on the exact solution [10]

$$
\begin{equation*}
P_{\text {free }}\left(x, v ; x_{0}, v_{0} ; t\right)=\frac{\sqrt{3}}{2 \pi t^{2}} \exp \left\{-\frac{3}{t^{3}}\left[\left(x-x_{0}-v_{0} t\right)\left(x-x_{0}-v t\right)+\frac{1}{3}\left(v-v_{0}\right)^{2} t^{2}\right]\right\} \tag{27}
\end{equation*}
$$

of the Fokker-Planck equation (5) with initial condition (6) in the absence of boundaries. Trajectories with the probability distribution $P_{\text {free }}\left(x_{n+1}, v_{n+1} ; x_{n}, v_{n} ; \Delta_{n+1}\right)$ given by (27) are generated using the algorithm

$$
\begin{align*}
& x_{n+1}=x_{n}+v_{n} \Delta_{n+1}+\left(\frac{\Delta_{n+1}^{3}}{6}\right)^{1 / 2}\left(s_{n+1}+\sqrt{3} r_{n+1}\right)  \tag{28}\\
& v_{n+1}=v_{n}+\left(2 \Delta_{n+1}\right)^{1 / 2} r_{n+1} \tag{29}
\end{align*}
$$



Figure 1. The probability $q_{0}\left(x_{0}, v_{0}\right)$ of absorption at the origin. The full curves show the exact result given in equation (24). The points are the results of our computer simulations. The data points have a statistical uncertainty $\pm \delta q_{0}$ with $\left|\delta q_{0}\right| \lesssim 0.001$.
where $x_{n}$ and $v_{n}$ are the position and velocity of the particle at time $t_{n}$, and $\Delta_{n+1}=t_{n+1}-t_{n}$. The quantities $r_{n}$ and $s_{n}$ are independent Gaussian random numbers such that

$$
\begin{equation*}
\left\langle r_{n}\right\rangle=\left\langle s_{n}\right\rangle=0 \quad\left\langle r_{n}^{2}\right\rangle=\left\langle s_{n}^{2}\right\rangle=1 . \tag{30}
\end{equation*}
$$

In the absence of boundaries there is no time-step error in the algorithm, i.e. the $\Delta_{n}$ may be chosen arbitrarily. Close to boundaries small time steps are needed.

To derive a quantitative criterion for an acceptable time step, we begin with the averages

$$
\begin{equation*}
\langle x(t)\rangle=x_{0}+v_{0} t \quad\left\langle[x(t)-\langle x(t)\rangle]^{2}\right\rangle=\frac{2}{3} t^{3} \tag{31}
\end{equation*}
$$

implied by the distribution function (27). At time $t$ the particle coordinate $x$ has a Gaussian distribution, with a maximum at $x=x_{0}+v_{0} t$ and the root-mean-square width $\left(\frac{2}{3} t^{3}\right)^{1 / 2}$. The effect of the boundaries on the propagation is negligible if the Gaussian peak lies almost entirely within the interval $0<x<1$. This is certainly the case if, say,

$$
\begin{equation*}
0<x_{0}+v_{0} t \pm 5 t^{3 / 2}<1 \tag{32}
\end{equation*}
$$

Over the range of velocities encountered in our simulations, any $t$ which satisfies the simpler, more stringent condition

$$
\begin{equation*}
t<\frac{1}{10} x_{0}\left(1-x_{0}\right) \tag{33}
\end{equation*}
$$

also satisfies (32).
Keeping inequality (33) in mind, we performed our simulations with the time step

$$
\begin{equation*}
\Delta_{n+1}=10^{-5}+10^{-1} x_{n}\left(1-x_{n}\right) . \tag{34}
\end{equation*}
$$

The time step decreases as the particle approaches the boundary and has the minimum value $10^{-5}$. It is necessary to have a small non-zero minimum value. Otherwise the particle never
arrives at the boundaries. Our results for the absorption probability $q_{0}\left(x_{0}, v_{0}\right)$ are averages based on $10^{5}$ trajectories for each set of initial conditions $x_{0}, v_{0}$.

Finally, we note that $q_{0}\left(x_{0}, v_{0}\right)$ may be derived from another general Green's function solution $\dagger$ of the Fokker-Planck equation (14),

$$
\begin{array}{r}
\psi(x, v)=\frac{v^{1 / 2}}{3 x} \int_{0}^{\infty} \mathrm{d} u u^{3 / 2} \mathrm{e}^{-\left(v^{3}+u^{3}\right) / 9 x} I_{1 / 3}\left(\frac{2 v^{3 / 2} u^{3 / 2}}{9 x}\right) \psi(0, u) \\
+\frac{v}{3^{2 / 3} \Gamma\left(\frac{1}{3}\right)} \int_{0}^{x} \mathrm{~d} y \frac{\mathrm{e}^{-v^{3} / 9(x-y)}}{(x-y)^{4 / 3}} \psi(y, 0) \quad v>0 \tag{35}
\end{array}
$$

different from (17). By substituting equation (35) in (14), one can check that the FokkerPlanck equation is indeed satisfied. On the lines $x=0$ and $v=0$ equation (35) reduces to the identities $\psi(0, v)=\psi(0, v)$ and $\psi(x, 0)=\psi(x, 0)$, respectively.

Equation (35) determines $\psi(x, v)$ for all $x>0$ and $v>0$ from $\psi(0, v), v>0$ and $\psi(x, 0)$. The first of these functions is given in equation (15). To determine the second one, we differentiate equation (35) with respect to $v$ and then set $v=0$, which yields

$$
\begin{align*}
\frac{\partial \psi(x, 0)}{\partial v}= & \frac{1}{3^{2 / 3} \Gamma\left(\frac{1}{3}\right)}\left[x^{-4 / 3} \int_{0}^{\infty} \mathrm{d} u u^{2} \mathrm{e}^{-u^{3} / 9 x} \psi(0, u)-3 x^{-1 / 3} \psi(0,0)\right. \\
& \left.-3 \int_{0}^{x} \frac{\mathrm{~d} y}{(x-y)^{1 / 3}} \frac{\partial \psi(y, 0)}{\partial y}\right] \tag{36}
\end{align*}
$$

For the absorbing boundary condition (15) the first two terms on the right-hand side of (36) cancel. Substituting equation (36) in the relation $\partial \psi(x, 0) / \partial v-\partial \psi(1-x, 0) / \partial v=0$, which follows from (16), using the invariance of $\partial \psi(y, 0) / \partial y$ under $y \rightarrow 1-y$, and integrating with respect to $x$ yields

$$
\begin{equation*}
\int_{0}^{1} \mathrm{~d} y|x-y|^{2 / 3} \frac{\partial \psi(y, 0)}{\partial y}=\text { constant } . \tag{37}
\end{equation*}
$$

The function $\psi(x, 0)$ given in equations (13) and (26) satisfies equation (37). Substituting this $\psi(x, 0)$ and $\psi(0, v)=\frac{1}{2}$ into equation (35), integrating, and using (11)-(13), we obtain

$$
\begin{align*}
q_{0}\left(x_{0}, v_{0}\right) & =1-q_{0}\left(1-x_{0},-v_{0}\right) \\
& =\frac{2 \times 3^{1 / 3} v}{\Gamma\left(\frac{1}{6}\right)^{2}} \int_{x_{0}}^{1} \mathrm{~d} y \frac{\mathrm{e}^{-v_{0}^{3} / 9\left(y-x_{0}\right)}}{\left(y-x_{0}\right)^{4 / 3}}(1-y)^{1 / 6}{ }_{2} F_{1}\left(\frac{1}{6}, \frac{5}{6} ; \frac{7}{6} ; 1-y\right) \quad v_{0}>0 . \tag{38}
\end{align*}
$$

With the help of the identity
$\int_{0}^{x} \mathrm{~d} y \frac{\mathrm{e}^{-v^{3} / 9(x-y)}}{(x-y)^{2 / 3}} f(y)=\frac{v}{3^{2 / 3} \Gamma\left(\frac{1}{3}\right)} \int_{0}^{x} \mathrm{~d} z \frac{\mathrm{e}^{-v^{3} / 9(x-z)}}{(x-z)^{4 / 3}} \int_{0}^{z} \mathrm{~d} y \frac{f(y)}{(z-y)^{2 / 3}}$
for arbitrary $f(y)$, one can convert expression (38) for $q_{0}\left(x_{0}, v_{0}\right)$ into the simpler form (24).
The second of the two Green function solutions (17), (35) looks simpler than the first, since no derivatives of $\psi$ appear on the right-hand side, but our main result (24) for $q_{0}\left(x_{0}, v_{0}\right)$ is obtained more easily from (17).
$\dagger$ This solution may be derived by slightly modifying the derivation in appendix A of [5]. Setting $v=0$ in equation (A3) of [5], solving for $W(s)$, and reinserting the result in (A3) with $v \neq 0$ yields the Laplace transform of the new solution (35).

## Acknowledgments

It is a pleasure to thank Bernard Derrida and George W Ford for stimulating discussions. TWB appreciates the hospitality of the Ecole Normale Supérieure, Paris and the Institut LaueLangevin, Grenoble and was also supported by Temple University.

## References

[1] Feller W 1968 An Introduction to Probability Theory and its Applications vol 1, 3rd edn (New York: Wiley)
[2] Risken H 1989 The Fokker-Planck Equation: Method of Solution and Applications (Berlin: Springer)
[3] Masoliver J and Porrà J M 1995 Phys. Rev. Lett. 75189
Masoliver J and Porrà J M 1996 Phys. Rev. E 532243
[4] Burkhardt T W 1997 J. Phys. A: Math. Gen. 30 L167
[5] Burkhardt T W, Franklin J and Gawronski R R 2000 Phys. Rev. E 612376
[6] Cornell S J, Swift M R and Bray A J 1998 Phys. Rev. Lett. 811142
[7] Porter D and Stirling D S G 1990 Integral Equations (Cambridge: Cambridge University Press)
[8] Gradshteyn I S and Ryzhik I M 1980 Tables of Integrals, Series and Products (New York: Academic)
[9] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
[10] Gompper G and Burkhardt T W 1989 Phys. Rev. A 406124

